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a b s t r a c t

Buoy-type ocean wave energy converters are designed to exhibit resonant responses

when subject to excitation by ocean waves. A novel excitation scheme is proposed

which has the potential to improve the energy harvesting capabilities of these

converters. The scheme uses the incident waves to modulate the mass of the device

scheme, a simple one-degree of freedom model is developed for the wave energy

converter. This model has the form of a switched linear system. After the stability

regime of this system has been established, the model is then used to show that the

excitation scheme improves the power harvesting capabilities by 25–65 percent even

when amplitude restrictions are present. It is also demonstrated that the sensitivity of

the device’s power harvesting capabilities to changes in damping becomes much

smaller when the novel excitation scheme is used.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Ocean waves are a source of renewable energy with energy densities far exceeding those of any other renewable source,
such as solar or wind power [1]. Wave energy converters (WEC) belong to a class of mechanical devices that harvest the
energy stored in the ocean waves and transform it into a more useful form, typically electrical. Seminal works in this area
include Salter’s paper [2] which appeared during the oil crisis in 1974, and the subsequent papers by Evans [3,4] and Mei
[5] showing how WECs of the type discussed by Salter could extract 100 percent of the incident wave energy. Since Salter’s
work, many categories of WECs have appeared [6]. The primary type of WEC of interest here are known as wave activated
bodies (WAB). In these devices, waves force the device into oscillatory motions (mainly heave, pitch, and roll), and a power
takeoff system (PTO) uses these motions to drive a generator. These devices are usually implemented off-shore in deep
water, where the waves are stronger and a greater motion range is possible.

The Wavebob,1 a floating buoy (cf. Fig. 1), and Pelamis,2 a floating snake, are two of the most well-known examples of
such wave energy converters. As illustrated in the patent [7], Wavebob uses two floats, which are connected to each other
by a hydraulic PTO and move relative to each other due to a phase offset in the waves’ forcing. The device also allows active
changes to the mass (and thus the natural frequency) of both floats by filling underwater reservoirs with water in order to
match the dominant exciting frequency of the waves, thus ensuring that the system is at or near resonance as often as
possible. Resonance is desirable because the power harnessed through a hydraulic PTO depends on (in this case) the
vertical velocity of the floats relative to each other. Since the wave climate in deep sea can stay relatively constant for
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Fig. 1. Schematic of a wave energy converter. The relative motion of the inner and outer floats is used to generate electricity.
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hours, the mass adjustments are made infrequently. Further, the resonant frequencies are usually of the order of 0.5 Hz
and lower.

To further improve on the aforementioned resonant excitation and the energy harvesting capabilities of WAB-type
WECs, we propose a novel excitation scheme in this paper. The scheme has similarities to, but is distinct from, the familiar
parametric excitation of an oscillator: a scheme that has a long and celebrated history (see [8–11] and references therein).
Dating to the seminal paper by Rugar and Grütter [12] it has been known that parametric excitation can produce
mechanical amplification in the response of a resonator. This amplification has been used in a variety of MEMS oscillators
(see [13] and references therein), and has also been discussed for use in a type of WEC featuring oscillating water columns
[14]. Here, we propose a novel excitation method for WECs which extends the idea of using the mass of added water as
ballast and also produces a mechanical amplification. However, instead of long-term mass adjustments, water intake and
disposal happens as rapidly as two times per motion cycle. Further, the distinction between the resulting excitation and a
parametric excitation lies in the fact that the variation in the mass for the novel excitation scheme is state-dependent.3 The
excitation scheme is realizable and we have designed a mechanical system that results in an nearly square wave
modulation of the mass parameter. Using a simple one-degree of freedom model, we will show that the amplification of
the resonant response can be used to significantly increase the power harvesting capabilities of a WEC.

In the next section of this paper, the novel excitation scheme is presented. We then introduce a simple dynamics model
for our system, formulate the equations of motion and discuss a solution procedure for them. Although the resulting model
is linear, it is also a switched system, and we need to examine the boundedness of its output to bounded inputs. That is, we
need to examine its bounded-input–bounded-output (BIBO) stability. In Section 4, our stability analysis, which is based on
a one-dimensional Poincaré map, is presented. We show that the BIBO stability of the system features a balance between
mass modulation and damping. Following the stability analysis, we look at the average harnessed power per cycle and
examine the efficacy of our excitation scheme in Section 5. Finally, we subject the system to an amplitude constraint and
find the damping values which enable a maximization of harnessed power. Even in the presence of amplitude limitations,
we find that an increase in energy harvesting of up to 65 percent is possible. The paper closes with a discussion of
unresolved issues and future proposed work on the excitation scheme.
2. A novel excitation scheme for wave energy converters

The excitation system we propose here mimics a square wave modulation of the mass of the WEC. This modulation
occurs at twice the temporal frequency of the incident waves and results in a state-dependent excitation. The excitation
system depends crucially on a water intake system which traps water for the first quarter of the incident wave’s periodic
motion, releases it for the second quarter of the wave’s motion, traps it for the third quarter of the wave’s motion, and
releases it once more for the final quarter of the wave’s motion.
3 By way of contrast, the dynamics of a parametrically excited oscillator whose inertia is varied as a prescribed function of time is considered

in [9,10].
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Fig. 2. Illustration of the operation of the water intake mechanism. An animation of the mechanism can be found at

[http://me.berkeley.edu/�bayram/wec/water_intake_animation.html].

B. Orazov et al. / Journal of Sound and Vibration 329 (2010) 5058–50695060
Referring to Fig. 2, the water intake system is composed of a submerged (at all times) hollow cylinder labeled (2) in
Fig. 2, open at both ends and rigidly attached to the surface float (1) that is excited by the waves. Inside the cylinder,
located near its vertical midpoint (3), are two pairs of centrally hinged butterfly flaps. The upper flaps (4) are able to swing
between horizontal and nearly vertical up positions, while the lower flaps (5) can only swing between horizontal and
nearly vertical down positions. The exact vertical orientations would depend on system design considerations, such as
geometry, drag vs. sensitivity tradeoff, etc.

When in the horizontal ‘closed’ position, each pair of flaps covers the entire cross section of the cylinder, thereby blocking off
water flow through the inside of the cylinder. As water cannot flow through the cylinder, it gets trapped in one of its halves
(in the upper half when the float/cylinder system is moving up, and in the lower half during downward motion of the system),
thereby creating the desired added mass effect. It should be noted that the mechanism is arranged in such a way as to allow at
most one set of flaps to be closed at any given time. The remaining parts of the water intake system, as labeled in Fig. 2, are the
horizontal plates (6), sliding on the outside of the cylinder due to water pressure from the top or bottom, depending on the
direction of motion. When passing through the midpoint (3) of the cylinder, the sliding plates can lock or unlock the flaps (4) or
(5) in their ‘open’ configurations. In Fig. 2 the locked state is indicated by an arc between the flaps. The locking mechanism can
range from a simple mechanical device to an electronically controlled brake.

During a typical period of the system’s motion (shown as a dashed sine wave), the water intake operates as follows. At point
labeled a in Fig. 2 the sliding plates (6) pass through the midpoint (3) of the cylinder, locking lower flaps (5) in the open
configuration and unlocking upper flaps (4) from their previously open configuration. Because the cylinder is moving up, the
water pressure above the upper flaps is greater than below them. This forces the upper flaps to swing downward into the
horizontal configuration and block off the cylinder’s cross section. In turn, this leads to the added mass effect, due to the water
(7) trapped in the upper half of the cylinder. The device remains in this state until it reaches point b, the topmost position in the
cycle. Note that by the time b is reached, the horizontal plates (6) are near the bottom of the cylinder.

At b, the direction of motion is reversed, with the entire system accelerating down. Now the water pressure below the
upper flaps is greater than above them, which forces the flaps to swing up and allows water to flow through the cylinder.
The lower flaps (5) are still locked in the open state, so they cannot close, despite the increased water pressure from below.
Therefore, no mass is added during the quarter cycle between b and c. Meanwhile, the sliding plates (6) are moving up
relative to the cylinder.

At point c the downward motion continues, reaching the maximum vertical speed. As the plates (6) again pass through
the midpoint (3) of the cylinder, they lock the upper flaps (4) in the open state and unlock the lower flaps (5), allowing

http://me.berkeley.edu/~bayram/wec/water_intake_animation.html
http://me.berkeley.edu/~bayram/wec/water_intake_animation.html


B. Orazov et al. / Journal of Sound and Vibration 329 (2010) 5058–5069 5061
them to close under increased water pressure from below. This now traps the volume of water in the lower half of the
cylinder, again leading to the added mass effect. The system continues to move in this state until point d, by which time the
sliding plates (6) have moved to the top of the cylinder.

At d the direction of motion is again reversed and the system starts to accelerate up. This forces the lower flaps (5) to
open, and water flow through the cylinder is again established, resulting in no added mass. The horizontal plates (6) are
now moving down relative to the cylinder, and when point a is reached in the next cycle, they pass through the midpoint
(3), locking the lower flaps (5) open and unlocking the upper flaps (4) to close. The cycle then repeats. It should be noted
that although the sliding horizontal plates (6) move up and down relative to the cylinder (2), their absolute position in the
water remains approximately constant. Effectively, they act as inertial plates and remain stationary in the water.

3. A simple model for the WEC

To show the efficacy of the novel excitation scheme, we first develop and analyze the simplest possible model of a
heaving buoy WEC. The model is a single degree-of-freedom damped, harmonically excited linear oscillator, whose mass m

is modulated in time (cf. Fig. 3). The system features a square wave modulation in the mass parameter. An amount of water
mass is added to the system for two of the quarter cycles, and no water mass is added during the other two quarter cycles.
Referring to Fig. 2, the precise instants where water is added or released is governed by the instants when either the
displacement y or velocity dy/dt of the oscillator are zero. The effects of the ocean waves are modeled by an external
harmonic excitation. Following the work of Salter et al. [2,3,5], we model the power takeoff as a damping element and this
element is incorporated into the damping term in the model. The goal of the model is to examine how the power absorbed
by the oscillator’s PTO can be optimized using the state-dependent modulation of the mass. Due to the mass intake and
release, we find that the model may also be conveniently described as a hybrid or switched linear system.

It is straightforward to show that the governing equations for the simple model are the following system:

Mð1þmÞd
2y

dt2
þC

dy

dt
þKy¼ Fsinðof tÞ, y

dy

dt
40,

M
d2y

dt2
þC

dy

dt
þKy¼ Fsinðof tÞ, y

dy

dt
o0: (1)

Here, y is the displacement of the mass, M is the default system mass, mM is the added mass, C is the damping coefficient (a
sum of viscous damping from the water and external damping from the PTO), K is a spring constant of hydrodynamic
origin, and F is the magnitude of the external excitation force (attributed to water waves) which is varying sinusoidally at a
frequency of . We refer to m as the mass modulation parameter.

The system (1) is an example of a switched system where the switching conditions are state-dependent. The set of
differential equations (1) needs to be supplemented by jump conditions at the locations where y dy/dt=0. These locations,
which are referred to as the switching set, are along the y=0 and dy/dt=0 axes in the y–dy/dt plane. For the simple model,
we shall assume that y(t) and dy/dt are both continuous functions of time at the switching set. Continuity of y(t) is easy to
justify on the grounds that the motion of the oscillator is physically realistic. On the other hand, the continuity of dy/dt

assumes that the intake and release of the added mass mM does not result in impulsive loading.
We non-dimensionalize (1) by defining a time t¼ t

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
which is used to help transform (1) into

€xþ2d1 _xþo2
n1

x¼ f1sinðotÞ, _xx40,

€xþ2d2 _xþx¼ f2sinðotÞ, _xxo0: (2)

The ð_Þ indicates a differentiation with respect to t and the new parameters and fields are given by

x¼
y

L
, f1 ¼o2

n1
f2, d1 ¼

d2

ð1þmÞ
, on1

¼

ffiffiffiffiffiffiffiffiffiffiffi
1

1þm

s
,

y(t)F sin(� f t)

C K

M(1 + �)

Fig. 3. Schematic for the single degree-of-freedom linear oscillator.
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f2 ¼ f ¼
F

KL
, d2 ¼ d¼

C

2
ffiffiffiffiffiffiffiffi
KM
p , o¼of

ffiffiffiffiffi
M

K

r
, (3)

where L is a suitable length scale.4 The solutions to (2) are classical:

x¼
x1ðtÞ when _xx40,

x2ðtÞ when _xxo0:

(
(4)

Here,

x1ðtÞ ¼ e�d1tðA1cosðod1
tÞþB1sinðod1

tÞÞþX1sinðot�f1Þ,

x2ðtÞ ¼ e�d2tðA2cosðod2
tÞþB2sinðod2

tÞÞþX2sinðot�f2Þ, (5)

with

X1 ¼
f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
n1
�o2Þ

2
þð2d1oÞ2

q ,

X2 ¼
f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�o2Þ
2
þð2d2oÞ2

q , (6)

and

od1
¼on1

od2
, od2

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

2

q
,

f1 ¼ tan�1 2d1o
o2

n1
�o2

 !
, f2 ¼ tan�1 2d2o

1�o2

� �
: (7)

For a given motion of the system, the constants Ai and Bi are prescribed by matching the solutions x1ðtÞ and x2ðtÞ at the
switching boundaries.

It is tempting to assume that the solution to (2) will always be bounded if the input is bounded (i.e., BIBO stable). However,
because we are dealing with a switched system, it is well-known that this is not necessarily the case (see [15–17]).
Two representative examples of stable and unstable responses of the system are shown in Fig. 4. The limit cycles shown in
these figures are the steady-state response of the system. From numerical integrations of (2) we observe that for a fixed value of
damping d2 if the mass modulation parameter m is sufficiently small, then the response of the system will be BIBO stable.
However, if m is sufficiently large then the response will no longer have this property. Clearly, it is of interest to determine the
regime where the system is BIBO stable. We now turn to this issue.

4. Bounded-input–bounded-output stability of the system

Of primary interest is to determine the parameters for BIBO stability of the switched system (2). For a given excitation
f2sinðotÞ, we observe that the system has a steady-state response which is a limit cycle (cf. Fig. 4). We wish to determine
the conditions for the stability of this limit cycle or equivalently the BIBO stability of the system.
4 For example, L could be chosen to be the maximum allowable displacement of the mass–spring–damper system.
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Developing analytical criteria for the BIBO stability of the system is challenging. Several results are available and
feature the construction of a Lyapunov function for a discrete-time equivalent system (see [18,19]). In this paper, we
follow an alternative approach. First, we restrict attention to the unforced system and establish the stability criterion for its
trivial equilibrium. To do this, we construct a one-dimensional Poincaré map. The resulting stability criteria are
presented as a curve in the m2d plane. We then examine the stability of the limit cycles observed in the forced system
using an extensive series of numerical integrations. After these results are compiled, it becomes evident that the
stability results for the unforced system provide a useful coarse estimate on the parameter regime for the BIBO of the
forced system.

4.1. Stability of the trivial equilibrium

The unforced system is governed by the equations (from (2)):

€xþ2d1 _xþo2
n1

x¼ 0, _xx40,

€xþ2d2 _xþx¼ 0, _xxo0, (8)

respectively. Clearly this system has a single trivial equilibrium. To examine the stability of the trivial equilibrium, we
solve (8) over a time interval T. Referring to Fig. 5, it is easy to see that this allows us to define a Poincaré map F:

znþ1 ¼FðznÞ, (9)

where

zn ¼ ð0, _xðnTÞÞ 2 B, n 2 Zþ : (10)

The switching boundary B is

B¼ fðx, _xÞjx¼ 0 and _x40g: (11)

The time T is the time it takes for a solution of the differential equation to return to B. For linear stability of the trivial
equilibrium, we require the one-dimensional map F to be contractive.

After some work with the solutions of (8), we find that F is a simple linear mapping:

znþ1 ¼ p2zn: (12)

The function p is defined by

p¼
1

on1

e�d2T2 e�d1T1 ¼ e�d2T2 e�d1T1
ffiffiffiffiffiffiffiffiffiffiffi
1þm

p
, (13)

where the times T1 and T2 are found by solving the transcendental equations

d1

on1
od1

tanðod1
T1Þ ¼ 1,

d2

od2

tanðod2
T2Þ ¼�1: (14)
dx
d

x

zn

zn+1

Fig. 5. Schematic of the phase flow of (8) and how it is used to construct the Poincaré map F : B-B.
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That is,

T1 ¼
1

od1

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

d2
1

o2
n1

s ! !
,

T2 ¼
1

od2

p�arcsin
ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

2

q� �� �
,

T ¼ 2T1þ2T2: (15)

For stability, we require jpjo1.
To determine the stability of the trivial equilibrium, we seek points where jpjo1. This calculation leads to the stability

region shown in Fig. 6. Clearly, there is a delicate balance here between mass modulation m and damping d2. If the latter is
sufficiently large, then stability will always be guaranteed. Otherwise, under perturbation, the trivial equilibrium will
become unstable. In physical terms, if one adds and extracts too much mass then it can become unstable if insufficient
damping is present.

4.2. Numerical investigation for BIBO stability

When the system is harmonically excited (i.e., f1,2sinðotÞa0), a limit cycle is observed. An explicit expression for
x(t)=xL(t) corresponding to the limit cycle can be determined by piecewise matching of the solutions (5) to (2), and
computing the time periods when the solution transits between elements of the switching set (which is defined by x _x ¼ 0).
The equations needed to determine xL(t) are nonlinear and must be solved numerically. An alternative method of finding
the limit cycle is to numerically integrate (2) forwards (backwards) in time to find the stable (unstable) limit cycle. This is
the approach we followed. One result that is evident from these simulations is that the xL(t) will contain contributions from
the terms with frequencies od1,2

in (5).
To examine the stability of the limit cycle, we numerically integrate (2) for various values of the excitation frequency o.

Of particular interest is the case o¼opeak, which corresponds to the excitation frequency which results in the largest
displacement of the system. The value of opeak depends on m and d2 and must be determined numerically. As can be seen
from Fig. 7, the response of the system to this excitation frequency determines the BIBO stability regime. The stability
criterion for the unforced case from Fig. 6 is also shown in Fig. 7. The proximity of the criteria for f2=0 and o¼opeak is
remarkable.

5. The efficacy of mass modulation for energy harvesting

Of crucial interest is the amount of energy harvested by the oscillator compared to the energy which is incident on the
oscillator due to the forcing f sinðof tÞ. To compute the harvested energy it suffices to calculate the average power per cycle
of the external forcing that the system can harness. Here, the harnessed power [2,3,5,20,21] is taken to be proportional to
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the damping coefficient d¼ d2 ¼ C=2
ffiffiffiffiffiffiffiffi
KM
p

and the velocity squared.5 That is, the average power harvested is

Pavg ¼
d
T

Z T

0

_x2 dt: (16)

The average power per cycle is then given by dividing Pavg by the number of cycles during this time interval. First, we note
that

Tcycle ¼
2p
o , o¼of

ffiffiffiffiffi
M

K

r
: (17)

Then, the average power per cycle Pcycle is

Pcycle ¼
Pavg

Tcycle
¼

d
T � Tcycle

Z T

0

_x2 dt: (18)

Simulating the system for a range of frequencies and computing Pcycle, gives the results shown in Fig. 8. When computing
these results, values of m and d corresponding to BIBO stability of the system were selected.

The results shown in Fig. 8 were obtained using m values corresponding to 0, 20, 45, 50 and 95 percent of the total mass
M, respectively. For higher values of the mass modulation parameter m the plots show a marked increase in power
produced by the excited system, compared to the regular case (i.e., the case m¼ 0 shown in Fig. 8(a)). The maximum power
per cycle Pcyclemax

values for each of the cases presented in Fig. 8 are given in Table 1. These results demonstrate that the
mass modulation can significantly improve the energy harvesting capabilities of the oscillator. It should also be noted that
in contrast to a regular system where m¼ 0, the power peak for the mass modulated system lies to the left of the o¼ 1 line.
5 This damping coefficient d is the sum of the damping provided by the PTO and the hydrodynamic damping. We tacitly assume that the latter is

constant in our analyses, and assume that the variation of d can be achieved by altering the parameters of the PTO.



Table 1

Maximum power per cycle Pcyclemax
for various values of damping factor d¼ C=2

ffiffiffiffiffiffiffiffi
KM
p

and mass modulation parameter m.

Pcyclemax
d¼ 0:14 d¼ 0:245

m¼ 0 0.56 0.32

m¼ 0:2 1.6 –

m¼ 0:45 45 –

m¼ 0:50 – 1.55

m¼ 0:95 – 260

All presented combinations of d and m result in a stable system.
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Since o¼of =
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
does not take into account the mass modulation m term (which would lower the value of the resonant

frequency), effectively o¼ 1 lies above the resonant frequency for the system with the novel excitation scheme.
6. The maximum power that can be harvested when the amplitude of motion is limited

The dramatic increase in absorbed power happens primarily at low values of damping, and correspondingly high
amplitudes of oscillation. In practice, this would not be achievable, as there would inevitably exist a number of restrictions
(such as stroking, slamming and force restrictions) on the maximum allowable response amplitude. To explore this issue
further, we now examine the power which can be harvested if the response amplitude of the system is restricted.

In this section, we discuss an analytical expression for the optimum damping coefficient d as a function of driving
frequency o which maximizes Pcycle at every o. We start our analysis with the case where there is no mass modulation
(i.e., m¼ 0), and then supplement these results with numerically obtained values of the damping coefficients that
maximize the harvested power for the cases where the mass is modulated using the novel excitation scheme.

For practical reasons, the system’s response amplitude often needs to be limited to some maximum value Xmax. Using
this value in (6)2 and solving for d yields

dmin ¼
1

2o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2�X2

maxð1�o2Þ
2

q
: (19)

This expression gives the lower bound on the value of d necessary to keep the response amplitude at or below Xmax. Yet, for
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�f=Xmax

p
or oZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=Xmax

p
, it is evident that dmin given by (19) has no real component, meaning that the

harnessed power in (18) is zero. This also means that for these frequency ranges, the system would not be able to oscillate
at an amplitude of Xmax while absorbing power from the damper. Thus, we need to find a value of d that will produce the
maximum power at each driving frequency o, regardless of amplitude constraints. To do this, we use (6)2 to establish an
expression for _x2 in (18) and then differentiate the resulting integral with respect to d. This is equivalent to maximizing the
function S as a function of d where

SðdÞ ¼
f 2o2d

ð1�o2Þ
2
þ4d2o2

: (20)

Solving for the values of d where qS=qd¼ 0, we find two values depending on the value of o:

d�A ¼
1�o2

2o
, d�B ¼

o2�1

2o
: (21)

Examining q2S=qd2
ðd¼ d�A,BÞ and evaluating it at d�A,B we find that it is negative. Thus d�A,B yield maximum values of

harvested power. Clearly, d�A,B-0 as o-1, so in the vicinity of the resonant frequency these values are not feasible.
Therefore, instead of looking at a single expression for optimal damping, we need to simultaneously take into account (19)
and (21). Fig. 9 shows a plot of d�A,B and dmin as functions of o.

We note that for ooo�A, d�A4dmin. Since d�A is set to maximize harnessed power without regard to amplitude limits,
and it exceeds the minimum value of damping needed to keep the response amplitude bounded, this is the value of the
damping coefficient that should be used in this frequency range. Likewise, for o4o�B, d�B4dmin, so d�B should be set as the
damping coefficient. But in the range o�Aroro�B, dmin is the lowest damping value at which Xmax is not exceeded. Hence
dmin is the damping setting of choice in this intermediate frequency range. Equating (19) and (21)1, we can solve for the
values of o�A and o�B:

o�A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fffiffiffi
2
p Xmax

s
, o�B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

fffiffiffi
2
p Xmax

s
: (22)
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dmin was computed using Xmax=1 and f=0.1. Note that the peak for dmin occurs slightly below o¼ 1. This is because the peak response amplitude (but not

power, as per [21]) for a damped system occurs at op ¼on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2d2

p
, where on is the undamped natural frequency (which is equivalent to o¼ 1 in our

model).
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Fig. 10. (a) Average power harvested per cycle and (b) response amplitude as functions of driving frequency o using the damping values given by (23).

Simulations were performed using f=0.1 and Xmax=1.
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Hence, the optimal damping coefficient is given by

dopt ¼

1�o2

2o
, 0rooo�A,

1

2oXmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2�X2

maxð1�o2Þ
2

q
, o�Arooo�B,

o2�1

2o
, o�Bro:

8>>>>>>><
>>>>>>>:

(23)

As an illustration, Fig. 10 shows the power harvested per cycle and maximum response amplitude as functions of
frequency o when dopt is used. Note that the peak in power occurs at a frequency om to the right of o¼ 1. This is due to the
fact that while response amplitude is capped at Xmax for both frequencies, the value of the velocity _x is higher at om.
Indeed, the ratio of peak power to that at o¼ 1 is proportional to the ratio of these two frequencies.

Next, we perform a set of simulations to determine optimal damping values at each excitation frequency o that
maximize harnessed power per cycle. Unlike the cases presented in Fig. 8, we impose an amplitude constraint of Xmax=1 at
all frequencies. The simulation program then sweeps through a range of damping values d at each frequency, computes the
power and maximum amplitude, and selects the damping value at which Pcycle is the largest while maxtjxðtÞjr1.
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using f=0.1 and Xmax=1.

Table 2

Maximum power per cycle Pcyclemax
and the associated optimal values of damping dopt for plots shown in Fig. 11.

m¼ 0 m¼ 0:1 m¼ 0:2 m¼ 0:3

Pcyclemax
0.004 0.005 0.0057 0.0065

o at Pcyclemax
1.005 0.9849 0.9647 0.9445

dopt at Pcyclemax
0.0495 0.0659 0.0828 0.0975
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The results are presented in Fig. 11 for m values of 0, 0.1, 0.2 and 0.3, while maximum power and optimal damping values
are shown in Table 2. An inspection of Fig. 11(a) reveals that when the amplitude is restricted, mass modulation no longer
provides the large improvements in harvested power that Fig. 8 showed. The improvements in maximum harnessed power
at m values of 0.1, 0.2 and 0.3 are 25, 42.5 and 62.5 percent, respectively. The gains would be larger if Xmax were larger.

Looking at Fig. 11(b), we observe that for all cases where mass modulation is present, the maximum response amplitude
hovers around the Xmax=1 mark. This means that amplitude constraints take precedence over power maximization. It is of
interest to compare this to the case of the constant mass system which is shown in Fig. 11(a)–(c) and labeled m¼ 0. For this
case, the maximum amplitude drops off on both sides of o¼ 1 to maximize power, as given by (21). Finally, Fig. 11(c)
shows that there is little variation in the optimal damping coefficients for the cases where ma0. Again, this is due to the
need to keep the peak amplitude below Xmax for all frequencies. It also implies that a WEC featuring the novel excitation
system has the advantage for the designer in having a small variation in the optimal damping parameter when compared
to the traditional system.

7. Conclusions and future work

The intent of this paper is to demonstrate the manner in which the novel excitation scheme can expand the poten-
tial and efficiency of ocean wave energy converters. We have chosen to model the system as simply as possible and
neglected several effects: most notably a detailed modeling of the hydrodynamic effects. It has been known since the work
of Cummins [22] that these effects will introduce memory-type terms into the governing equations of motion. The precise
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values of these terms depends on the geometry of the WEC [23]. The resulting delay-differential equations of motion are
notoriously difficult to analyze (see [24–26] and references therein), but this task will be the subject of our future work.

The second main object of our future work will be the development and wave tank testing of a scaled model for a WEC
featuring the novel excitation scheme presented in this paper. Such a model is also needed in order to characterize the
dissipation resulting from the excitation scheme and to quantify the significance of higher-order terms in our model.
Eventually, before a full implementation of the method, a full hydrodynamic simulation of the WEC, including all of its
components must be carried out. Such a simulation will be a major undertaking.
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